
Neutral Geometry

April 18, 2013

1 Geometry without parallel axiom

Let l, m be two distinct lines cut by a third line t at point P on l and point Q on m. Let A be
a point on l and B a point on m such that A,B are on the same side of t. Let A′ be a point
on the opposite open ray of r̊(P,A), and B′ a point on the opposite open ray of r̊(Q,B).
The four angles ∠APQ, ∠A′PQ, ∠BQP , ∠B′QP are known as interior angles. The pair
∠APQ,∠B′QP and the other pair ∠A′PQ,∠BQP are known as two pairs of alternate
interior angles. See Figure 1.
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Figure 1: Congruent alternate interior angles imply parallel

Theorem 1.1 (Alternate Interior Angle Theorem). If two distinct lines cut by a
transversal have a pair of congruent alternate interior angles, then the two lines are par-
allel.

Proof. Let l,m be two lines cut by a transversal t such that ∠APQ ∼= ∠B′QP ; see Figure 1.
We need to show that l, m do not meet. Suppose they meet at a point R, say, on the side
of A,B bounded by t. Draw a point R′ on the ray r(Q,B′) so that QR′ ∼= PR. Then
∆QPR ∼= ∆PQR′ by SAS. Thus ∠PQR ∼= ∠QPR′, i.e., ∠BQP ∼= ∠R′PQ.

Since ∠A′PQ is supplementary to ∠APQ, and ∠BQP is supplementary to ∠B′QP , we
see that ∠A′PQ ∼= ∠BQP by Supplementary Angle Congruence Rule. So ∠A′PQ ∼= ∠R′PQ.
This means that R′ must be on the line l by Betweenness Axiom 1. Then it forces that l = m
since there is only one line through two points R,R′. This is a contradiction. Hence l, m do
not meet, i.e., l‖m.

Corollary 1.2. Tow distinct lines perpendicular to a common line are parallel. In particular,
there is exactly one line through a point P perpendicular to a given line l.

Proof. Let l, m be two distinct lines perpendicular to a common line t. If l, m are cut by t at
two distinct points P,Q respectively, then all interior angles are right angles. Hence they are
congruent by Right Angle Congruence Theorem. In particular, the alternate interior angles
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are congruent. So l,m are parallel by Alternate Interior Angle Theorem 1.1. If l, m are cut
by t at the same point, we must have l = m, since all right angles are congruent and the two
lines perpendicular to t must be the same.

In the case that P is not on the line l, suppose there are two lines m,n perpendicular to
l and both pass through P . Then m,n are parallel by Alternate Interior Angle Theorem 1.1.
This is contradictory to the fact that they meet at P . In the case that P is on l, the
perpendicular line to l through P is unique because all right angles are congruent and two
perpendicular lines must be the same.

Corollary 1.3. Through a point P not on a line l there exists at least one line m parallel
to l.

Proof. Through the point P not on line l there is a unique line m perpendicular to l. Through
P there is a unique line n perpendicular to m. The line m cut both lines l, n and all interior
angles are right angles, hence they are congruent. Of course, the alternate interior angles
are congruent. So l, n are parallel by Alternate Interior Angle Theorem.

Warning. Uniqueness of perpendicular line does not imply the uniqueness of parallel line.

Recall the exterior angle of a triangle and its remote exterior angles.

Theorem 1.4 (Exterior Angle Theorem). An exterior angle of a triangle is greater than
each of its remote interior angles.

Proof. Given a triangle ∆ABC and its exterior angle ∠BCD at vertex C. See Figure 2. We
show ∠B < ∠BCD first. Suppose ∠ABC ∼= ∠BCD. Then lines AB, AC are parallel (since
alternate interior angles are congruent). This is impossible.
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Figure 2: Exterior angle is larger than its remote exterior angle

Suppose ∠ABC > ∠BCD. Take an interior point F of ∠ABC such that ∠FBC ∼=
∠BCD. Then lines BF, CD are parallel (since alternate interior angles are congruent).
However, BF meets AC at G between A and C by Between-Cross Lemma. Since AC is
part of line CD, this is contradictory to that BF, CD are parallel. Hence we must have
∠ABC < ∠BCD.

Likewise, the exterior angle ∠ACE > ∠BAC. Since ∠ACE ∼= ∠BCD as opposite
angles, we have ∠BCD > ∠BAC by linear order property of angles.

Proposition 1.5 (Side-angle-angle criterion) (SAA). Given triangles ∆ABC and ∆A′B′C ′.
If AB ∼= A′B′, ∠BAC ∼= ∠B′A′C ′, and ∠ACB ∼= ∠A′C ′B′, then ∆ABC ∼= ∆A′B′C ′.

Proof. Suppose ∠ABC > ∠A′B′C ′. Pick an interior point D of ∠ABC such that ∠ABD ∼=
∠A′B′C ′. The line BD meets AC at E between A and C by Between-Cross Lemma. Then
∆ABE ∼= ∆A′B′C ′ by ASA. Thus ∠AEB ∼= ∠A′C ′B′. Since ∠A′C ′B′ ∼= ∠ACB, then
∠AEB ∼= ∠ACB. Note that ∠AEB is an exterior angle of ∆BCE at E. Then ∠AEB >
∠ECB, i.e., ∠AEB > ∠ACB by Exterior Angle Theorem. This is a contradiction.

Suppose ∠ABC < ∠A′B′C ′. A similar argument leads to a contradiction.
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Figure 3: Side-angle-angle criterion

Warning. There is no angle-side-side criterion for congruence of triangles. Here is an
example of two non-congruent triangles satisfying the angle-side-side conditions; see Figure 4.
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Figure 4: No angle-side-side criterion

Proposition 1.6. Given right triangles ∆ABC and ∆A′B′C ′ with right angles ∠C and ∠C ′.
If AB ∼= A′B′ and BC ∼= B′C ′, then ∆ABC ∼= ∆A′B′C ′.

Proof. Suppose AC > A′C ′. Let E be a point between A and C such that EC ∼= A′C ′. See
Figure 5. Then ∆EBC ∼= ∆A′B′C ′ by SAS. Subsequently, EB ∼= A′B′ ∼= AB. This means
that ∆BAE is an isosceles triangle. Hence ∠EAB ∼= ∠AEB. Now Exterior Angle Theorem
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Figure 5: Right triangle congruence criterion

and right angle property imply

∠AEB > ∠ECB ∼= ∠DCB > ∠CAB = ∠EAB ∼= ∠AEB,

i.e., ∠AEB > ∠AEB, which is a contradiction. Likewise, AC < A′C ′ leads to a similar
contradiction. We then have AC ∼= A′C ′. Hence ∆ABC ∼= ∆A′B′C ′ by SAS.

A midpoint of a segment AB is a point P between A and B such that AP ∼= PB. It is
easy to see that the midpoint of a segment is unique if it exists.

Proposition 1.7 (Midpoint Theorem). Every segment has a unique midpoint.
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Figure 6: Construction of midpoint

Proof. Given a triangle ∆ABC. We plan to find the midpoint of segment BC. Extend
AC to a point D such that A ∗ C ∗D. Then A,D are on opposite sides of line BC. Since
∠DCB > ∠ABC by Exterior Angle Theorem, there exists a unique ray r(C, P ) between
rays r(C, B), r(C, D) such that ∠ABC ∼= ∠BCP . Note that P,D are on the same side of
BC. Mark the unique point E on r(C, P ) such that AB ∼= CE by Congruence Axiom 1.
Note that D,E, P are the same side BC. Since A,D are on opposite sides of BC, then A,E
are on opposite sides of BC. So line BC meets the segment AE at a point F between A
and E. To see that F is between B and C, it suffices to show that E ∈ ∠̊BAC because of
Crossbar Theorem. In fact, E, P, B are on the same side of AC. Since ∠ABC ∼= ∠BCE,
line CE is parallel to AB; of course, E, P, C are the same side of AB. Then E ∈ ∠̊BAC.

Now we have AB ∼= EC, ∠ABC ∼= ∠ECB, and ∠AFB ∼= EFC (opposite angles), then
∆ABF ∼= ECF by SAA. Hence BF ∼= CF . The uniqueness is trivial.

Proposition 1.8 (Bisector Theorem). (a) Every angle has a unique bisector. (b) Every
segment has a unique perpendicular bisector.

Proof. (a) Given an angle ∠AOB with OA ∼= OB. Draw the segment AB, find the midpoint
P of AB, and draw segment OP . Then ∆OPA ∼= ∆OPB by SSS. Hence ∠AOP ∼= ∠BOP .
So ray r(O,P ) is a bisector of ∠AOB. The uniqueness is trivial.

(b) Trivial.

Proposition 1.9 (Angle-opposite-side relation). For any triangle ∆ABC, we have
∠A > ∠B if and only if BC > AC.

E
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C

D

Figure 7: Side-angle proportion relation

Proof. “⇐” (sufficiency): Find bisector r(C, P ) of ∠C, which meets AB at D between A
and B. Lay off CA on CB to have segment CE ∼= CA. Then ∆ACD ∼= ∆ECD by SAS.
So ∠A ∼= ∠CED. Note that ∠CED > ∠B by Exterior Angle Theorem for ∆BDE. Hence
∠A > ∠B.

“⇒” (necessity): If BC ∼= AC, then ∆ABC is an isosceles triangle. So ∠A ∼= ∠B, which
is contradictory to ∠A > ∠B. If BC < AC, then ∠B > ∠A, which is contradictory to
∠A > ∠B. Hence BC > AC by trichotomy of segments.
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Corollary 1.10. (a) If ∠Q is a right angle for a triangle ∆PQR, then ∠P < ∠Q, ∠R < ∠Q.
(b) Given a point P not on a line l, let Q be the foot of the perpendicular line through

P . Then PQ < PR for all points R on l other than Q.

A R Q

P

lB

Figure 8: Shortest distance from a point to a line

Proof. Mark two points A,B on line l such that A ∗ R ∗ Q ∗ B. Then ∠BQP > ∠QRP
by Exterior Angle Theorem for ∆RQP . Since ∠BQP ∼= ∠RQP , then ∠QRP < ∠RQP .
Subsequently, PQ < PR by the angle-opposite-side relation for triangle ∆RQP .

2 Measures of segments and angles

It is clear that segment congruence is an equivalence relation on the set of all segments. For
each segment AB we may use [AB] to denote the congruence equivalence class of AB. Recall
that line AB is totally ordered. We may view AB as a segment together with an order such
that A ≺ B. For any segment CD, we can construct a new segment AP on the ray r(A,B)
by laying off CD on the ray r(B, B′), where A ∗B ∗B′, such that BB′ ∼= CD. We write this
new segment AB′ as

AB + CD.

Note that CD + AB is a segment on ray r(C, D) with endpoint C. Of course, AB + CD
and CD + AB are certainly distinct segments. However, AB + CD ∼= CD + AB. For the
congruence equivalence classes [AB], [CD], we define

[AB] + [CD] := [AB + CD].

If EF is a segment, it is easy to see that

(AB + CD) + EF ∼= AB + (CD + EF ).

We then have
[AB] + [CD] = [CD] + [AB].

([AB] + [CD]) + [EF ] = [AB] + ([CD] + [EF ]).

Let 1
2
· AB denote the segment whose endpoints are A and the midpoint of AB. For each

positive integer k, let k · AB denote the segment obtained by laying off k copies of AB on
the ray r(A,B) starting from A; let us define the segment

1

2k
· AB :=

1

2
·
(
· · ·

(
1

2
·
(

1

2
· AB

)))

︸ ︷︷ ︸
k

.

For integers p ∈ Z and positive integer q ∈ Z+, we write

2pq · AB := 2p · (q · AB) = q · (2p · AB),

2pq[AB] := [2pq · AB].
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Theorem 2.1. Fix a segment OI, called unit segment. There exists a unique mapping
from the set of all segments to the set R+ of positive real numbers, AB 7→ |AB|, satisfying
the properties:

(a) |OI| = 1.
(b) |AB| = |CD| if and only if AB ∼= CD.
(c) A ∗B ∗ C if and only if |AC| = |AB|+ |BC|.
(d) |AB| < |CD| if and only if AB < CD.
(e) For each positive real number a, there exists a segment AB such that |AB| = a.

Proof. (Sketch) Fix open ray r̊(O, I). Each segment is congruent to a segment OA with
unique point A ∈ r̊(O, I). It suffices to assign for each point A ∈ r̊(O, I) a positive real
number. The right endpoints of the segments 2pq · OI are assigned to numbers 2pq, known
as dyatic rational numbers. If Archimedes’ axiom is satisfied, then every point in r̊(O, I)
has a decimal expression with base 2, and the point is assigned to the real number with
decimal expression.

Given a real number a > 0. Let Σ1 := {P ∈ r̊(O, I) : |OQ| ≤ a} and Σ2 := r̊(O, I)rΣ1.
Then {Σ1, Σ2} is a Dedekind cut of r̊(O, I). There exists a unique Q such that Σ1 = [O,Q]
and Σ2 = (Q, ·). We must have |OQ| = a.

Definition 1. (a) Two angles ∠AOB and ∠A′O′B′ are said to be addable if there exists
an angle ∠AOC such that B ∈ ∠̊AOC and ∠BOC ∼= ∠A′O′B′. We define the partial
addition

∠AOB + ∠B′O′C ′ := ∠AOC.

(b) An half-plane is also known as a flat angle. We assume that all flat angles are
congruent.

Theorem 2.2 (Degree measure of angles). There exists a unique mapping from the set of
all angles to the interval (0, 180) of real numbers, ∠A 7→ ∠A◦, satisfying the properties:

(a) ∠A◦ = 90◦ if ∠A is a right angle.
(b) ∠A◦ = ∠B◦ if and only if ∠A ∼= ∠B.
(c) If h(O,B) is contained in ∠oAOC, then ∠AOC◦ = ∠AOB◦ + ∠BOC◦.
(d) ∠A◦ < ∠B◦ if and only if ∠A < ∠B.
(e) If ∠A, ∠B are complementary, then ∠A◦ + ∠B◦ = 180◦.
(f) For each positive real number a ∈ (0, 180), there exists an angle ∠AOB such that

∠AOB◦ = 180◦.

Proof. (Sketch) Fix ray r(O,A) and consider angles ∠AOB. Since each angle can be bisected,
we denote by 1

2
·∠AOB the angle ∠AOP , where r(O,P ) is the bisector of ∠AOB. We then

have angles
1

2k
· ∠AOB :=

1

2
·
(
· · ·

(
1

2
·
(

1

2
· ∠AOB

)))

︸ ︷︷ ︸
k

, k ≥ 1.

If ∠AOB is addable to (k − 1)∠AOB, we define

k∠AOB := (k − 1)∠AOB + ∠AOB

We thus have
2−pq ∠AOB = q(2−p∠AOB)

as long as they are addable to each other. Let [∠AOB] denote the equivalence class of angles
congruent to ∠AOB. Then

2−pq [∠AOB] := [2−pq ∠AOB].
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Now we fix a right angle ∠ROT . Assign the angles 2−pq ∠ROT to the real numbers
90 · 2−pq, that is,

2−pq ∠ROT 7→ (2−pq ∠ROT )◦ = 90 · 2−pq◦.

Dedekind’s axiom ensures that the assignment can be extended into a bijection from angle
congruence classes onto the open interval (0, 180) of real numbers expressed in decimal form
of base 2, satisfying (a)-(f). For instance, for part (e) about complementary angles ∠A, ∠B,
we see that 1

2
∠A + 1

2
∠B is a right angle so that

(
1

2
∠A +

1

2
∠B

)◦
= 90◦.

Corollary 2.3 (Consecutive Interior Angle Theorem). If two distinct lines cut by a
transversal have a pair of consecutive interior angles whose angle sum is a flat angle, then
the two lines are parallel.

Proof. We assume in Figure 1 that ∠APQ + ∠BQP is congruent to a flat angle. Since
∠B′QP + ∠BQP is congruent is a flat angle, we see that ∠APQ ∼= ∠B′QP . So m‖l.
Proposition 2.4 (Triangle inequality). Let A,B,C be three distinct non-collinear points.
Then

|AC| < |AB|+ |BC|.
Proof. There exists a unique point D such that A ∗ B ∗ D and BD ∼= BC by Congruence
Axiom 1. See Figure 9. Then ∠BCD ∼= BDC because of the isosceles triangle ∆BCD.
Since ∠ACD > ∠BCD ∼= ∠BDC, we have ∠ACD > ∠BDC = ∠ADC. Hence AD > AC
by the angle-opposite-side relation. Since AD ∼= AB + BC, we obtain AB + BC > AC.
Subsequently, |AB|+ |BC| > |AC| by measure of segments.

A C

D

B

Figure 9: Triangle inequality

Proposition 2.5 (Included angle-opposite-side relation of equal sides). Given tri-
angles ∆ABC, ∆A′B′C ′ and AB ∼= A′B′, AC ∼= A′C ′. Then ∠A > ∠A′ if and only if
BC > B′C ′.

DB
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P

E

F

A’ C’

B’

Figure 10: Equal sides and its included angle-opposite-side relation
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Proof. “⇒”: Let ∠BAC > ∠B′A′C ′. Draw a ray r(A,P ) between r(A,B) and r(A,C) such
that ∠BAP ∼= ∠B′A′C ′. Let D be a point on r(A,P ) such that AD ∼= A′C ′, and E the
intersection of r(A,P ) and BC such that B ∗E ∗C. Draw the angle bisector of ∠CAD and
its intersection with CE at F between C and E. Then ∆ACF ∼= ∆ADF by SAS. Hence
FC ∼= FD. Note that BF +FD > BD by triangle inequality. Then BF +FC > BD. Since
BF + FC ∼= BC and B′C ′ ∼= BD. We obtain BC > B′C ′.

“⇐”: Let BC > B′C ′. If ∠BAC ∼= ∠B′A′C ′; then ∆ABC ∼= ∆A′B′C ′ by SAS; so
BC ∼= B′C ′, which is a contradiction. If ∠BAC < ∠B′A′C ′, then B′C ′ > BC by what
just proved previously, which is also a contradiction. Hence we have ∠BAC > ∠B′A′C ′ by
trichotomy of angles.

3 Saccheri-Legendre theorem

Lemma 2. Given a triangle ∆ABC. Let D be the midpoint of BC and E a point on the
ray r(A,D) such that DE ∼= AD and A ∗D ∗ E. Draw the segment CE. Then

(a) The angle sum of ∆AEC equals the angle sum of ∆ABC.
(b) Either ∠EAC ≤ 1

2
∠BAC or ∠AEC ≤ 1

2
∠BAC.

B

A C

D

E

Figure 11: Half-angle triangle

Proof. (a) Note that ∆ABD ∼= ∆ECD by SAS. Then ∠DAB ∼= ∠DEC, ∠DBA ∼= ∠DCE,
i.e., ∠EAB ∼= ∠AEC, ∠ABC ∼= ∠BCE. The angle sum of ∆AEC is

∠EAC◦ + ∠AEC◦ + ∠ACB◦ + ∠BCE◦ = ∠EAC◦ + ∠EAB◦ + ∠ACB◦ + ∠ABC◦,

which is the angle sum of ∆ABC.
(b) Since ∠BAC ∼= ∠BAE + ∠CAE and ∠BAE ∼= ∠AEC, we have either ∠CAE .

1
2
∠BAC or ∠AEC . 1

2
∠BAC.

Lemma 3. The sum of any two angles of a triangle is smaller than a flat angle.

Proof. Given a triangle ∆ABC. The exterior angle of ∠B is larger than ∠A. Since the angle
sum of ∠B and its exterior angle is a flat angle, then ∠A and ∠B are addable, and their
addition is smaller than a flat angle. So their angle sum is less than 180◦.

Theorem 3.1 (Saccheri-Legendre) (Angle-Sum Theorem). The sum of degree measures of
the three angles in any triangle is less than or equal to 180◦.

Proof. Suppose the angle sum of a triangle ∆ABC is greater than 180◦, say, 180◦ + ε◦ with
ε > 0. Then by Lemma 2 there exists another triangle ∆A1B1C1, having the angle sum
180◦ + ε◦ and ∠A1

◦ ≤ 1
2
∠A◦. Then there is a triangle ∆A2B2C2, having the angle sum

180◦ + ε◦ and ∠A2
◦ ≤ 1

2
∠A1

◦, i.e., ∠A2
◦ ≤ 1

22 ∠A◦. Continue this procedure, we obtain
triangles ∆AkBkCk having the angle sum 180◦ + ε◦ and ∠Ak

◦ ≤ 1
2k ∠A◦, k ≥ 1. When k is

large enough we have ∠Ak
◦ < ε◦, then the sum of the other two angles of ∆AkBkCk will be

greater than 180◦, which is contradictory to that the sum of any two angles of a triangle is
less than 180◦.
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Corollary 3.2. The sum of two angles of a triangle is less than or equal to its remote
exterior angle.

Proof. Given a triangle ∆ABC. Let ext (∠C) denote the exterior angle of ∆ABC at C.
Then

∠A + ∠B + ∠C ≤ 108◦ = ∠C + ext (∠C).

So ∠A + ∠B ≤ ext (∠C).

Definition 4. A quadrilateral is a collection of four points A,B,C,D, denoted ¤ABCD,
such that no three of them are collinear, and the interior of the four segments AB, BC,CD, DA
are disjoint. A quadrilateral is said to be convex if it has a pair of opposite sides, say, AB
and CD, such that CD is contained in an open half-plane bounded by AB, and AB is
contained in an open half-plane bounded by CD.

Lemma 5. A quadrilateral ¤ABCD is convex if and only if the intersection

¤̊ABCD := ∠̊ABC ∩ ∠̊BCD ∩ ∠̊CDA ∩ ∠̊DAB,

called the interior of ¤ABCD, is nonempty. If ¤ABCD is convex, then AC meets BD at
P ∈ ¤̊ABCD. We define

¤ABCD := ∠ABC ∩ ∠BCD ∩ ∠CDA ∩ ∠DAB.

Proof. “⇐:” Take a point P ∈ ¤̊ABCD. Then C, P are the on the same side of AB; D,P
are the on the same side of AB. So C, D are the same side of AB. Likewise, A,B are the
same side of CD. Hence ¤ABCD is convex by definition.

“⇒:” Let A,B be on the same side of CD, and C, D be on the same side of AB. Draw
segment AC to have triangles ∆ABC and ∆CDA. Then either B, D are on opposite sides
of AC or B, D are on the same side of AC.

Case 1. Points B, D are on opposite sides of CA. Then CA meets BD at a point P such
that B ∗ P ∗D. There are three subcases.

Subcase 1.1. C ∗ P ∗ A. This means that AC intersects BD at P such that A ∗ P ∗ C
and B ∗ P ∗D. Since P ∈ AC, we have P ∈ ∠̊ABC and P ∈ ∠̊CDA. Since P ∈ BD, we
have P ∈ ∠̊DAB and P ∈ ∠̊BCD. Hence P ∈ ¤̊ABCD. See the left of Figure 12.

Subcase 1.2. P ∗ C ∗ A. Then P ∈ ∠̊DAB by Crossbar Theorem. Thus C ∈ ∆̊DAB.
Hence ray r(D,C) intersects AB at Q such that A ∗ Q ∗ B. This is contradictory to that
A,B are on the same side of CD. See the middle of Figure 12.

Subcase 1.3. C ∗ A ∗ P . Then P ∈ ∠̊BCD by Crossbar Theorem. Thus A ∈ ∆̊BCD.
Hence ray r(B, A) intersects CD at Q such that C ∗ Q ∗ D. This is contradictory to that
C, D are on the same side of AB. See the right of Figure 12.

P

B

C D

A

C

AB

P

D

D

B

A

C

P

Figure 12: Convex quadrilateral and possible cases impossible

Case 2. Points B, D are on the same side of AC. Then either r(A,D) is between r(A,B)
and r(A,C), or r(A,B) is between r(A,D) and r(A,C).
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Subcase 2.1. Ray r(A,D) is between r(A,B) and r(A,C). Then r(A,D) meets BC at a
point Q such that B ∗Q∗C. If D∗Q∗A, then AD meets BC at Q, which is contradictory to
definition of quadrilateral ¤ABCD. See the left of Figure 13. If Q∗D∗A, then D ∈ ∠̊BAC.
Thus r(C, D) meets AB, which is contradictory to that A,B are on the same side of CD.
See the moddle of Figure 13.

Q

C

D

AB

D

C

AB

Q

D

C

A

QB

Figure 13: Other possible cases impossible

Subcase 2.2. Ray r(A,B) is between r(A,D) and r(A,C). Then r(A,B) meets CD at a
point Q such that C ∗Q ∗D. Then C, D are on opposite sides of AB, contradictory to that
C, D are on the same side of AB. See the right of Figure 13.

Proposition 3.3. Degree measure of angle sum of convex quadrilateral is at most 360◦.

Proof. Given a convex quadrilateral ¤ABCD and consider triangles ∆ABC and ∆CDA by
drawing segment AC. We have ∠BCA + ∠ACD ∼= ∠BCD, ∠BAC + ∠CAD ∼= ∠BAD.
Then the angle sum of ¤ABCD is congruent to the addition of the angle sum of ∆ABC and
the angle sum of ∆CDA. Hence the angle sum of ¤ABCD is less than or equal to 360◦.

4 Angle Defect of Triangle

Definition 6. The angle defect (or just defect) of a triangle ∆ABC is

δABC := 180◦ − ∠A◦ − ∠B◦ − ∠C◦.

Proposition 4.1 (Additivity of angle defect). Given a triangle ∆ABC and point D
between A and B on segment AB. Draw segment CD to have triangles ∆ACD and ∆BCD.
Then

δABC = δACD + δBCD.

Consequently, the angle sum of ∆ABC is equal to 180◦ if and only if the angle sums of both
triangles ∆ACD and ∆BCD are equal to 180◦.

C

DA B

Figure 14: Additivity of angle defect

Proof. Trivial.
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Theorem 4.2 (Once-Then-All Theorem). If there is one triangle whose angle sum is
180◦, then all triangles have angle sum equal to 180◦. This can be split into the following
three statements.

(a) If there exists a triangle whose angle sum is 180◦, then there exists a rectangle.
(b) If there exists a rectangle, then every right triangle has angle sum equal to 180◦.
(c) If all right triangles have angle sum equal to 180◦, then every triangle has angle sum

equal to 180◦.

Proof. Let ∆ABC be a triangle. Then ∆ABC has at least two acute angles, say, ∠A and
∠B. There exists a unique line CD perpendicular to AB, meeting AB at D. If D ∗ A ∗ B,
then ∠BAC > ∠ADC = right angle, which is a contradiction. Likewise, A ∗ B ∗ D is
impossible. Then we must have A ∗D ∗B. Thus ∆ACD and ∆BCD are right triangles.

(a) Let ∆ABC have angle sum equal to 180◦, i.e., its angle defect is zero. Then both
right triangles ∆ACD and ∆BCD have angle sum equal 180◦. We construct a rectangle
¤BDCE from the right triangle ∆BCD.

C

BD A

C

A D B

PE

Figure 15: A triangle is cut to two right triangles

Draw ray r(C, P ) to be such that ∠BCP ∼= ∠CBD. Mark a point on r(C, P ) such that
CE ∼= DB. Then ∆CBD ∼= ∆BCE by SAS. Thus ∠BCD ∼= ∠CBE, ∠BEC ∼= ∠CDB, so
∠BEC is a right angle. Since δCBD = 0, so is δBCE. Moreover, ∠DCB+∠BCE ∼= ∠DCE
is a right angle. Hence the quadrilateral ¤BDCE is a rectangle.

(b) Given an arbitrary right triangle ∆A′B′C ′. It is easy to see that a rectangle can be
doubled in either side. So we may assume that there exists a rectangle ¤ABCD such that
AB > A′B′ and CB > C ′B′. See Figure 16. Clearly, ∆ABC and ∆ADC are right triangles,
having zero angle defect. Mark points P on AB and Q on BC such that A∗P ∗B, C ∗Q∗B,
and PB ∼= A′B′, QB ∼= C ′B′. Then ∆PBQ ∼= ∆A′B′C ′. Now the triangle ∆PBC has
zero angle defect by additivity. Then ∆PBQ has zero angle defect by additivity again. So
∆A′B′C ′ has zero angle defect.

C

C’Q

P B A’ B’A

D

Figure 16: Big rectangle

(c) Now for an arbitrary triangle ∆ABC, we may assume that ∠A and ∠B are acute.
Then ∆ABC can be divided into two right triangles ∆ACD and ∆BCD. Then ∆ACD and
∆BCD have zero angle defect. So is ∆ABC by additivity of angle defect. Hence ∆ABC
has angle sum of degree measures equal to 180◦.

Corollary 4.3. If a triangle has positive angle defect, then all triangles have positive angle
defect.

Proof. Trivial.
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5 Equivalence of Parallel Postulates

Unique Parallel Line Postulate (UPLP). Through a point P not on a line l there exists
exactly one line m parallel to l.

Euclid’s Postulate V (EPV). If two distinct lines l, m intersect a transversal t in such a
way that the sum of the interior angles on one side of t is less than a flat angle, then l, m
meet on the same side of t having the two interior angles.

Hilbert’s Axiom of Parallelism (HAP). Through a point P not on a line l there exists
at most one line m parallel to l.

Theorem 5.1. Euclid’s Postulate V ⇔ Hilbert’s Axiom of Parallelism.

P’

P

A

A’

Q B
m

l

B’

R’

t

Figure 17: Equivalence of Euclid’s Postulate V and Hilbert’s axiom

Proof. Given distinct lines l, m, t such that l, t meet at P and m, t meet at Q. Mark point
A on l and point B on m on the same side of t. Mark point A′ on l and B′ on m such
that A′ ∗ P ∗ A and B′ ∗ Q ∗ B. Draw ray r(Q,R′) on open half-pane H̊(t, B′) such that
∠R′QP ∼= ∠APQ. Extend r(Q,R′) to line m′. Then m′ is parallel to l.

“⇒:” Let m be an arbitrary line through Q and parallel to l. EPV implies

∠APQ◦ + ∠BQP ◦ ≥ 180◦, ∠A′PQ◦ + ∠B′QP ◦ ≥ 180◦.

Since ∠APQ◦ + ∠BQP + A′PQ◦ + ∠B′QP = 360◦, it follows that

∠APQ◦ + ∠BQP ◦ = 180◦, ∠A′PQ◦ + ∠B′QP ◦ = 180◦.

Since ∠B′QP ◦ + ∠BQP ◦ = 180◦, then ∠B′QP ◦ = ∠APQ◦. Note that ∠APQ = ∠R′QP .
We thus have ∠BQP = ∠R′QP . So m = m′, which is Hilbert axiom.

“⇐:” Let angle sum of consecutive interior angles be less that 180◦, i.e.,

∠APQ◦ + ∠BQP ◦ < 180◦.

Since ∠B′QP ◦ + ∠BQP ◦ = 180◦, then ∠B′QP ◦ > ∠APQ◦. Clearly, m′ 6= m. Since
l ⊂ H̊(m′, P ), r(Q,B′) ⊂ H̊(m′, P ′), then r(P,A′), r(Q,B′) do not meet. If r(P,A), r(Q,B)
do not meet, then m is parallel to l. So m = m′, contradiction to m 6= m′. Hence
r(P,A), r(Q,B) meet.

Proposition 5.2. Under Hilbert’s Axiom of Parallelism. Let two lines l,m be parallel and
cut by a transversal t. Then

(a) Alternate interior angles are congruent.
(b) Corresponding angles are congruent.
(c) The sum of degree measures of consecutive interior angles is 180◦.
(d) The angle sum of degree measures of a triangle is 180◦.
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Proof. (a) There exists a line m through P and parallel to l, having congruent alternate
interior angles. Then every line parallel to l must be this line m. So the alternate interior
angles are congruent.

(b) It follows from (a) and the fact that opposite angles are congruent.
(c) It follows from the fact that the sum of supplementary angles is 180◦.
(d) Extend the segment AC to E and draw ray r(C, D) such that ∠BCD ∼= ∠B. Then

r(C, D) is parallel to AB. Thus ∠DCE ∼= ∠A. Hence ∠A◦ + ∠B◦ + ∠C◦ = ∠DCE◦ +
∠BCD◦ + ∠ACB◦ = 180◦.

D

BA

C

E

Figure 18: Angle sum of a triangle is a flat angle

Theorem 5.3. Angle sum of a triangle equal to 180◦ ⇒ Hilbert’s axiom of parallelism.

Proof. Given a line l and point P not on l. Let t be the unique line through P and perpen-
dicular to l, meeting l at Q. Through P there is a unique line m perpendicular to t. Then
m is parallel to l. Let n be an arbitrary line through P and parallel to l, but distinct from
m. Pick a point R on m such that n intersects the interior of ∠QPR. Fix a point S on n
such that S ∈ ∠̊QPY . Then angle ∠RPS is acute. See Figure 19.

S

P

Z

Q l

t

m

nX

YR

Figure 19: Existence of rectangle implies unique parallel.

Let X be a point on the open ray r̊(P, S). Drop perpendicular XY to m with foot Y
on m, and perpendicular XZ to t with foot Z on t. Note that l, m, XZ are parallel to each
other. So X,Z are on the same side of lines l,m respectively. We then have P ∗ Z ∗ Q.
Analogously, lines t,XY are parallel to each other. Then X,Y are on the same side of t and
P,Z are on the same side of XY . Hence the quadrilateral ¤PY XZ is convex.

Note that ∠XZP , ∠ZPY , ∠PY X are right angles. Since every triangle has angle sum
equal to 180◦, then ∠ZPX +∠PXZ is a right angle. Since ∠ZPX +∠XPY is a right angle,
we see that ∠XPY ∼= ∠PXZ. Thus ∆PXY ∼= ∆XPZ by SAA. Subsequently, PZ ∼= XY .

Now we can take X to be such that XY > PQ by Aristotle’s axiom. Then PZ > PQ,
which is impossible. (Aristotle’s axiom can be easily followed from Archimedes’ axiom when
rectangle exists. However, it is no need to assume the existence of rectangle to obtain
Aristotle’s axiom from Archimedes’ axiom.)
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6 Saccheri quadrilaterals and Lambert quadrilaterals

A quadrilateral is said to be a Saccheri quadrilateral if its two base angles are right angles
and the base-angle adjacent opposite sides are congruent. For instance, for quadrilateral
¤ABCD with right angles ∠A, ∠B and AD ∼= BC is a Saccheri quadrilateral.

C

A B

D

Figure 20: A Saccheri quadrilateral

A quadrilateral is said to be a Lambert quadrilateral if it has at least three angles to
be right angles.

Proposition 6.1. Let ¤ABCD be a Saccheri quadrilateral with right angles ∠A, ∠B, and
AD ∼= BC. See Figure 20. Then ∠C ∼= ∠D.

Proof. Draw segments AC and BD. Note that ∆ABC ∼= ∆BAD by SAS. Then AC ∼=
BD and ∠BAC ∼= ∠ABD. Subsequently, ∠CAD ∼= DBC by angle subtraction. Hence
∆CAD ∼= ∆DBC by SAS. Therefore ∠ADC ∼= ∠BCD.

Proposition 6.2 (Property of quadrilateral with two adjacent right angles). Let ¤ABCD
be a quadrilateral with two adjacent right angles ∠A and ∠B. See Figure 21. Then

(a) ∠C < ∠D if and only if AD < BC.
(b) ∠C ∼= ∠D if and only if AD ∼= BC.

D

B

E

C

A F B

C

A

D

E

Figure 21: ¤ABED is a Saccheri quadrilateral

Proof. (a) “⇐”: Assume AD < BC. Find a point E on BC such that BE ∼= AD and
B ∗ E ∗ C; see the left of Figure 21. It is clear that B, E, C are on the same side of AD for
BC is parallel to AD. We claim that A,B are on the same side of DC. Suppose it is not
true, i.e., DC meets AB at point F such that A ∗ F ∗ B. Note that C, D, F are collinear.
Then ∠AFD (=∠AFC) is larger than ∠B and ∠BFD > ∠A by Exterior Angle Theorem.
Since ∠A, ∠B are right angles, so the sum of ∠AFD, ∠BFD are not a flat angle, which is
a contradiction.

Now we see that B is in the interior of ∠ADC. Since B ∗E ∗C, it follows that E is also
in the interior of ∠ADC. So the ray r(D,E) is between rays r(D,A) and r(D,C). Hence
∠ADE ∼= ∠BED. Clearly, Exterior Angle Theorem implies

∠D > ∠ADE ∼= ∠BED > ∠C.
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“⇒”: Assume ∠C < ∠D. If AD ∼= BC, then ∠C ∼= ∠D by Proposition 6.1, which is
contradictory to ∠C < ∠D. If BC < AD, then ∠C > ∠D by the previous argument, which
is a contradictory to ∠C < ∠D. So we must have AD < BC.

(b) Trivial.

Proposition 6.3 (Property of quadrilateral with three right angles). Let ¤ABCD be a
Lambert quadrilateral with right angles ∠A, ∠B, ∠C.

(a) Then ∠D is never obtuse.
(b) If ∠D is a right angle, then the opposite sides of ¤ABCD are congruent.
(c) If ∠D is acute, then each side adjacent to ∠D is greater than its opposite side.

Proof. Assume that AB, CD and AD,BC are two pairs of opposite sides of ¤ABCD.
(a) Trivial because Lambert quadrilateral is convex and its angle sum is less than or

equal to 360◦.
(b) The quadrilateral ¤ABCD is a rectangle. Then AD ∼= BC and AB ∼= CD by the

property of quadrilateral with two adjacent right angles.
(c) Then ∠D < ∠A and ∠D < ∠C. Hence AB < DC and CB < DA by the property of

quadrilateral with two adjacent right angles.

Lemma 7. Given a right triangle ∆OXY such that ∠Y is a right angle and ∠O is acute.
Extend OX to X ′ such that O∗X ∗X ′ and OX ∼= XX ′, extend Y X to Z such that Y ∗X ∗Z
and X ′Z is perpendicular to XY , and extend OY to Y ′ such that O ∗ Y ∗ Y ′ and X ′Y ′ is
perpendicular to OY . See Figure 22. Then

(a) X ′Y ′ is at least a double of XY , i.e., X ′Y ′ ≥ 2 ·XY .
(b) OY ′ is at most a double of OY , i.e., OY ′ ≤ 2 ·OY .

X’

O Y Y’

X

Z

Figure 22: Double of hypotenuse

Proof. Since XO ∼= XX ′, ∠XY O ∼= ∠XZX ′ = right angle, and ∠OXY ∼= ∠X ′XZ, then
∆OY X ∼= ∆X ′XZ by SAA. So XY ∼= XZ and X ′Z ∼= OY . Note that ¤Y Y ′X ′Z is
a Lambert quadrilateral with right angles ∠Y ′Y Z, ∠Y Y ′X ′, ∠Y ZX ′. We have |X ′Y ′| ≥
|ZY | = 2|XY | and |Y Y ′| ≤ |ZX ′| = |OY | by the property of quadrilateral with three right
angles. Hence |X ′Y ′| ≥ 2|XY | and |OY ′| ≤ 2|OY |.
Archimedes’ axiom implies Aristotle’s axiom. Given an acute angle ∠XOY . For an
arbitrary segment AB, there exists a point Y ′ on ray r(O, Y ) such that X ′Y ′ > AB, where
X ′Y ′ is perpendicular to OY with foot Y ′ on ray r(O, Y ).

Proof. Note that there exists a positive integer n such that 2n ·XY > AB by Archimedes’s
axiom. Let X1 be a point on r(O,X) such that OX1

∼= 2 · OX, and let X1Y1 be a segment
perpendicular to OY with foot Y1 on OY . Then |X1Y1| ≥ 2|XY |. Analogously, let X2 be a
point on r(O,X) such that OX2

∼= 2 · OX1, and let X2Y2 be the segment perpendicular to
OY with foot of X2 on OY . Then |X2Y2| ≥ 2|X1Y1| ≥ 22 · |XY |. Continue this procedure,
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Figure 23: Archimedes’ axiom implies Aristotle’s axiom

we have points Xk (k ≥ 1) on r(O,X) such that OXk
∼= 2 · OXk−1, and segments XkYk

perpendicular to OY with foot Yk on OY . Then

|XkYk| ≥ 2 · |Xk−1Yk−1| ≥ 2k · |XY |, k ≥ 1.

Hence there exits an integer n = 2k such that XkYk > n · AB.
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